Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Determination of Substrate Preferences for Desaturases and Elongases for Production of Docosahexaenoic Acid from Oleic Acid in Engineered Canola.

Identifieur interne : 000A33 ( Main/Exploration ); précédent : 000A32; suivant : 000A34

Determination of Substrate Preferences for Desaturases and Elongases for Production of Docosahexaenoic Acid from Oleic Acid in Engineered Canola.

Auteurs : Jenny Lindberg Yilmaz [Suède] ; Ze Long Lim [Canada] ; Mirela Beganovic [Suède] ; Steven Breazeale [États-Unis] ; Carl Andre [États-Unis] ; Sten Stymne [Suède] ; Patricia Vrinten [Canada] ; Toralf Senger [États-Unis]

Source :

RBID : pubmed:28197856

Descripteurs français

English descriptors

Abstract

Production of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in plant seed oils has been pursued to improve availability of these omega-3 fatty acids that provide important human health benefits. Canola (Brassica napus), through the introduction of 10 enzymes, can convert oleic acid (OLA) into EPA and ultimately DHA through a pathway consisting of two elongation and five desaturation steps. Herein we present an assessment of the substrate specificity of the seven desaturases and three elongases that were introduced into canola by expressing individual proteins in yeast. In vivo feeding experiments were conducted with 14 potential fatty acid intermediates in an OLA to DHA pathway to determine the fatty acid substrate profiles for each enzyme. Membrane fractions were prepared from yeast expression strains and shown to contain active enzymes. The elongases, as expected, extended acyl-CoA substrates in the presence of malonyl-CoA. To distinguish between enzymes that desaturate CoA- and phosphatidylcholine-linked fatty acid substrates, we developed a novel in vitro method. We show that a delta-12 desaturase from Phytophthora sojae, an omega-3 desaturase from Phytophthora infestans and a delta-4 desaturase from Thraustochytrium sp., all prefer phosphatidylcholine-linked acyl substrates with comparatively low use of acyl-CoA substrates. To further validate our method, a delta-9 desaturase from Saccharomyces cerevisiae was confirmed to use acyl-CoA as substrate, but could not use phosphatidylcholine-linked substrates. The results and the assay methods presented herein will be useful in efforts to improve modeling of fatty acid metabolism and production of EPA and DHA in plants.

DOI: 10.1007/s11745-017-4235-4
PubMed: 28197856
PubMed Central: PMC5325871


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Determination of Substrate Preferences for Desaturases and Elongases for Production of Docosahexaenoic Acid from Oleic Acid in Engineered Canola.</title>
<author>
<name sortKey="Yilmaz, Jenny Lindberg" sort="Yilmaz, Jenny Lindberg" uniqKey="Yilmaz J" first="Jenny Lindberg" last="Yilmaz">Jenny Lindberg Yilmaz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Scandinavian Biotechnology Research (ScanBiRes) AB, 230 53, Alnarp, Sweden. Jenny.LindbergYilmaz@scanbires.com.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Scandinavian Biotechnology Research (ScanBiRes) AB, 230 53, Alnarp</wicri:regionArea>
<wicri:noRegion>Alnarp</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lim, Ze Long" sort="Lim, Ze Long" uniqKey="Lim Z" first="Ze Long" last="Lim">Ze Long Lim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioriginal Food and Science Corporation, Saskatoon, SK, S7N 0W9, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Bioriginal Food and Science Corporation, Saskatoon, SK, S7N 0W9</wicri:regionArea>
<wicri:noRegion>S7N 0W9</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Beganovic, Mirela" sort="Beganovic, Mirela" uniqKey="Beganovic M" first="Mirela" last="Beganovic">Mirela Beganovic</name>
<affiliation wicri:level="1">
<nlm:affiliation>Scandinavian Biotechnology Research (ScanBiRes) AB, 230 53, Alnarp, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Scandinavian Biotechnology Research (ScanBiRes) AB, 230 53, Alnarp</wicri:regionArea>
<wicri:noRegion>Alnarp</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Breazeale, Steven" sort="Breazeale, Steven" uniqKey="Breazeale S" first="Steven" last="Breazeale">Steven Breazeale</name>
<affiliation wicri:level="1">
<nlm:affiliation>BASF Plant Science LP, Research Triangle Park, NC, 27709, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>BASF Plant Science LP, Research Triangle Park, NC, 27709</wicri:regionArea>
<wicri:noRegion>27709</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Andre, Carl" sort="Andre, Carl" uniqKey="Andre C" first="Carl" last="Andre">Carl Andre</name>
<affiliation wicri:level="1">
<nlm:affiliation>BASF Plant Science LP, Research Triangle Park, NC, 27709, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>BASF Plant Science LP, Research Triangle Park, NC, 27709</wicri:regionArea>
<wicri:noRegion>27709</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stymne, Sten" sort="Stymne, Sten" uniqKey="Stymne S" first="Sten" last="Stymne">Sten Stymne</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53, Alnarp, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53, Alnarp</wicri:regionArea>
<wicri:noRegion>Alnarp</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vrinten, Patricia" sort="Vrinten, Patricia" uniqKey="Vrinten P" first="Patricia" last="Vrinten">Patricia Vrinten</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioriginal Food and Science Corporation, Saskatoon, SK, S7N 0W9, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Bioriginal Food and Science Corporation, Saskatoon, SK, S7N 0W9</wicri:regionArea>
<wicri:noRegion>S7N 0W9</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Senger, Toralf" sort="Senger, Toralf" uniqKey="Senger T" first="Toralf" last="Senger">Toralf Senger</name>
<affiliation wicri:level="1">
<nlm:affiliation>BASF Plant Science LP, Research Triangle Park, NC, 27709, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>BASF Plant Science LP, Research Triangle Park, NC, 27709</wicri:regionArea>
<wicri:noRegion>27709</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28197856</idno>
<idno type="pmid">28197856</idno>
<idno type="doi">10.1007/s11745-017-4235-4</idno>
<idno type="pmc">PMC5325871</idno>
<idno type="wicri:Area/Main/Corpus">000A40</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A40</idno>
<idno type="wicri:Area/Main/Curation">000A40</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A40</idno>
<idno type="wicri:Area/Main/Exploration">000A40</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Determination of Substrate Preferences for Desaturases and Elongases for Production of Docosahexaenoic Acid from Oleic Acid in Engineered Canola.</title>
<author>
<name sortKey="Yilmaz, Jenny Lindberg" sort="Yilmaz, Jenny Lindberg" uniqKey="Yilmaz J" first="Jenny Lindberg" last="Yilmaz">Jenny Lindberg Yilmaz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Scandinavian Biotechnology Research (ScanBiRes) AB, 230 53, Alnarp, Sweden. Jenny.LindbergYilmaz@scanbires.com.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Scandinavian Biotechnology Research (ScanBiRes) AB, 230 53, Alnarp</wicri:regionArea>
<wicri:noRegion>Alnarp</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lim, Ze Long" sort="Lim, Ze Long" uniqKey="Lim Z" first="Ze Long" last="Lim">Ze Long Lim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioriginal Food and Science Corporation, Saskatoon, SK, S7N 0W9, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Bioriginal Food and Science Corporation, Saskatoon, SK, S7N 0W9</wicri:regionArea>
<wicri:noRegion>S7N 0W9</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Beganovic, Mirela" sort="Beganovic, Mirela" uniqKey="Beganovic M" first="Mirela" last="Beganovic">Mirela Beganovic</name>
<affiliation wicri:level="1">
<nlm:affiliation>Scandinavian Biotechnology Research (ScanBiRes) AB, 230 53, Alnarp, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Scandinavian Biotechnology Research (ScanBiRes) AB, 230 53, Alnarp</wicri:regionArea>
<wicri:noRegion>Alnarp</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Breazeale, Steven" sort="Breazeale, Steven" uniqKey="Breazeale S" first="Steven" last="Breazeale">Steven Breazeale</name>
<affiliation wicri:level="1">
<nlm:affiliation>BASF Plant Science LP, Research Triangle Park, NC, 27709, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>BASF Plant Science LP, Research Triangle Park, NC, 27709</wicri:regionArea>
<wicri:noRegion>27709</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Andre, Carl" sort="Andre, Carl" uniqKey="Andre C" first="Carl" last="Andre">Carl Andre</name>
<affiliation wicri:level="1">
<nlm:affiliation>BASF Plant Science LP, Research Triangle Park, NC, 27709, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>BASF Plant Science LP, Research Triangle Park, NC, 27709</wicri:regionArea>
<wicri:noRegion>27709</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stymne, Sten" sort="Stymne, Sten" uniqKey="Stymne S" first="Sten" last="Stymne">Sten Stymne</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53, Alnarp, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53, Alnarp</wicri:regionArea>
<wicri:noRegion>Alnarp</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vrinten, Patricia" sort="Vrinten, Patricia" uniqKey="Vrinten P" first="Patricia" last="Vrinten">Patricia Vrinten</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioriginal Food and Science Corporation, Saskatoon, SK, S7N 0W9, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Bioriginal Food and Science Corporation, Saskatoon, SK, S7N 0W9</wicri:regionArea>
<wicri:noRegion>S7N 0W9</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Senger, Toralf" sort="Senger, Toralf" uniqKey="Senger T" first="Toralf" last="Senger">Toralf Senger</name>
<affiliation wicri:level="1">
<nlm:affiliation>BASF Plant Science LP, Research Triangle Park, NC, 27709, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>BASF Plant Science LP, Research Triangle Park, NC, 27709</wicri:regionArea>
<wicri:noRegion>27709</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Lipids</title>
<idno type="eISSN">1558-9307</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetyltransferases (genetics)</term>
<term>Acetyltransferases (metabolism)</term>
<term>Acyl Coenzyme A (metabolism)</term>
<term>Brassica napus (chemistry)</term>
<term>Brassica napus (enzymology)</term>
<term>Brassica napus (genetics)</term>
<term>Docosahexaenoic Acids (metabolism)</term>
<term>Eicosapentaenoic Acid (metabolism)</term>
<term>Fatty Acid Desaturases (genetics)</term>
<term>Fatty Acid Desaturases (metabolism)</term>
<term>Genetic Engineering (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Malonyl Coenzyme A (metabolism)</term>
<term>Oleic Acid (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Substrate Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acetyltransferases (génétique)</term>
<term>Acetyltransferases (métabolisme)</term>
<term>Acide docosahexaénoïque (métabolisme)</term>
<term>Acide eicosapentanoïque (métabolisme)</term>
<term>Acide oléique (métabolisme)</term>
<term>Acyl coenzyme A (métabolisme)</term>
<term>Brassica napus (composition chimique)</term>
<term>Brassica napus (enzymologie)</term>
<term>Brassica napus (génétique)</term>
<term>Fatty acid desaturases (génétique)</term>
<term>Fatty acid desaturases (métabolisme)</term>
<term>Génie génétique (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Malonyl coenzyme A (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Spécificité du substrat (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Acetyltransferases</term>
<term>Fatty Acid Desaturases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acetyltransferases</term>
<term>Acyl Coenzyme A</term>
<term>Docosahexaenoic Acids</term>
<term>Eicosapentaenoic Acid</term>
<term>Fatty Acid Desaturases</term>
<term>Malonyl Coenzyme A</term>
<term>Oleic Acid</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Brassica napus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Brassica napus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Brassica napus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Brassica napus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Brassica napus</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Acetyltransferases</term>
<term>Brassica napus</term>
<term>Fatty acid desaturases</term>
<term>Protéines végétales</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acetyltransferases</term>
<term>Acide docosahexaénoïque</term>
<term>Acide eicosapentanoïque</term>
<term>Acide oléique</term>
<term>Acyl coenzyme A</term>
<term>Fatty acid desaturases</term>
<term>Malonyl coenzyme A</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genetic Engineering</term>
<term>Humans</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génie génétique</term>
<term>Humains</term>
<term>Spécificité du substrat</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Production of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in plant seed oils has been pursued to improve availability of these omega-3 fatty acids that provide important human health benefits. Canola (Brassica napus), through the introduction of 10 enzymes, can convert oleic acid (OLA) into EPA and ultimately DHA through a pathway consisting of two elongation and five desaturation steps. Herein we present an assessment of the substrate specificity of the seven desaturases and three elongases that were introduced into canola by expressing individual proteins in yeast. In vivo feeding experiments were conducted with 14 potential fatty acid intermediates in an OLA to DHA pathway to determine the fatty acid substrate profiles for each enzyme. Membrane fractions were prepared from yeast expression strains and shown to contain active enzymes. The elongases, as expected, extended acyl-CoA substrates in the presence of malonyl-CoA. To distinguish between enzymes that desaturate CoA- and phosphatidylcholine-linked fatty acid substrates, we developed a novel in vitro method. We show that a delta-12 desaturase from Phytophthora sojae, an omega-3 desaturase from Phytophthora infestans and a delta-4 desaturase from Thraustochytrium sp., all prefer phosphatidylcholine-linked acyl substrates with comparatively low use of acyl-CoA substrates. To further validate our method, a delta-9 desaturase from Saccharomyces cerevisiae was confirmed to use acyl-CoA as substrate, but could not use phosphatidylcholine-linked substrates. The results and the assay methods presented herein will be useful in efforts to improve modeling of fatty acid metabolism and production of EPA and DHA in plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28197856</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>07</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1558-9307</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>52</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2017</Year>
<Month>03</Month>
</PubDate>
</JournalIssue>
<Title>Lipids</Title>
<ISOAbbreviation>Lipids</ISOAbbreviation>
</Journal>
<ArticleTitle>Determination of Substrate Preferences for Desaturases and Elongases for Production of Docosahexaenoic Acid from Oleic Acid in Engineered Canola.</ArticleTitle>
<Pagination>
<MedlinePgn>207-222</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11745-017-4235-4</ELocationID>
<Abstract>
<AbstractText>Production of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in plant seed oils has been pursued to improve availability of these omega-3 fatty acids that provide important human health benefits. Canola (Brassica napus), through the introduction of 10 enzymes, can convert oleic acid (OLA) into EPA and ultimately DHA through a pathway consisting of two elongation and five desaturation steps. Herein we present an assessment of the substrate specificity of the seven desaturases and three elongases that were introduced into canola by expressing individual proteins in yeast. In vivo feeding experiments were conducted with 14 potential fatty acid intermediates in an OLA to DHA pathway to determine the fatty acid substrate profiles for each enzyme. Membrane fractions were prepared from yeast expression strains and shown to contain active enzymes. The elongases, as expected, extended acyl-CoA substrates in the presence of malonyl-CoA. To distinguish between enzymes that desaturate CoA- and phosphatidylcholine-linked fatty acid substrates, we developed a novel in vitro method. We show that a delta-12 desaturase from Phytophthora sojae, an omega-3 desaturase from Phytophthora infestans and a delta-4 desaturase from Thraustochytrium sp., all prefer phosphatidylcholine-linked acyl substrates with comparatively low use of acyl-CoA substrates. To further validate our method, a delta-9 desaturase from Saccharomyces cerevisiae was confirmed to use acyl-CoA as substrate, but could not use phosphatidylcholine-linked substrates. The results and the assay methods presented herein will be useful in efforts to improve modeling of fatty acid metabolism and production of EPA and DHA in plants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yilmaz</LastName>
<ForeName>Jenny Lindberg</ForeName>
<Initials>JL</Initials>
<AffiliationInfo>
<Affiliation>Scandinavian Biotechnology Research (ScanBiRes) AB, 230 53, Alnarp, Sweden. Jenny.LindbergYilmaz@scanbires.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lim</LastName>
<ForeName>Ze Long</ForeName>
<Initials>ZL</Initials>
<AffiliationInfo>
<Affiliation>Bioriginal Food and Science Corporation, Saskatoon, SK, S7N 0W9, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Beganovic</LastName>
<ForeName>Mirela</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Scandinavian Biotechnology Research (ScanBiRes) AB, 230 53, Alnarp, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Breazeale</LastName>
<ForeName>Steven</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>BASF Plant Science LP, Research Triangle Park, NC, 27709, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Andre</LastName>
<ForeName>Carl</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>BASF Plant Science LP, Research Triangle Park, NC, 27709, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stymne</LastName>
<ForeName>Sten</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53, Alnarp, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vrinten</LastName>
<ForeName>Patricia</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Bioriginal Food and Science Corporation, Saskatoon, SK, S7N 0W9, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Senger</LastName>
<ForeName>Toralf</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>BASF Plant Science LP, Research Triangle Park, NC, 27709, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>02</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Lipids</MedlineTA>
<NlmUniqueID>0060450</NlmUniqueID>
<ISSNLinking>0024-4201</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000214">Acyl Coenzyme A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>25167-62-8</RegistryNumber>
<NameOfSubstance UI="D004281">Docosahexaenoic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2UMI9U37CP</RegistryNumber>
<NameOfSubstance UI="D019301">Oleic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>524-14-1</RegistryNumber>
<NameOfSubstance UI="D008316">Malonyl Coenzyme A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>AAN7QOV9EA</RegistryNumber>
<NameOfSubstance UI="D015118">Eicosapentaenoic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.19.-</RegistryNumber>
<NameOfSubstance UI="D044943">Fatty Acid Desaturases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.-</RegistryNumber>
<NameOfSubstance UI="D000123">Acetyltransferases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000123" MajorTopicYN="N">Acetyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000214" MajorTopicYN="N">Acyl Coenzyme A</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029688" MajorTopicYN="N">Brassica napus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004281" MajorTopicYN="N">Docosahexaenoic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015118" MajorTopicYN="N">Eicosapentaenoic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044943" MajorTopicYN="N">Fatty Acid Desaturases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005818" MajorTopicYN="N">Genetic Engineering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008316" MajorTopicYN="N">Malonyl Coenzyme A</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019301" MajorTopicYN="N">Oleic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Acyl-CoA</Keyword>
<Keyword MajorTopicYN="Y">Desaturases</Keyword>
<Keyword MajorTopicYN="Y">Elongases</Keyword>
<Keyword MajorTopicYN="Y">Genetic engineering</Keyword>
<Keyword MajorTopicYN="Y">Lipid biochemistry</Keyword>
<Keyword MajorTopicYN="Y">Nutrition</Keyword>
<Keyword MajorTopicYN="Y">Phosphatidylcholine</Keyword>
<Keyword MajorTopicYN="Y">Polyunsaturated fatty acids (PUFA)</Keyword>
<Keyword MajorTopicYN="Y">n-3 Fatty acids</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>12</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>01</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28197856</ArticleId>
<ArticleId IdType="doi">10.1007/s11745-017-4235-4</ArticleId>
<ArticleId IdType="pii">10.1007/s11745-017-4235-4</ArticleId>
<ArticleId IdType="pmc">PMC5325871</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Planta. 2015 Feb;241(2):347-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25298156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lipids. 2012 Mar;47(3):227-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22009657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1993 Feb 1;289 ( Pt 3):777-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8435075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2015 Jul;22(7):581-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26098317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 Nov 25;265(33):20144-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1978720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2000 Dec;28(6):654-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11171159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Aug 13;524(7564):252-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26098370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1977 Oct 10;252(19):6736-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">893439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2510-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2006187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Oct 19;282(42):30562-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17726007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Lipid Res. 2014 Oct;56:19-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25107699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2014 Sep;12(7):934-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24851712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1973 Apr;132(4):697-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4721605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2005 Jul 15;389(Pt 2):483-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15769252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1976 Aug 25;251(16):5095-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Sep 28;282(39):28344-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17652094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2008 Dec;62(2):171-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18765284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2008 Nov 6;138(1-2):9-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18755227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 May;54(4):640-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18476869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arabidopsis Book. 2013;11:e0161</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23505340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Jul 13;293(5528):290-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11452122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2010 Apr;19(2):221-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19582587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):622-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20720171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Oct 19;282(42):30845-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17675291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Clin Nutr Metab Care. 2015 Mar;18(2):147-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25635599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutrients. 2014 Feb 21;6(2):776-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24566436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Aug 24;130(4):663-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17719544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1992 May 1;294(2):557-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1567212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Nov 23;282(47):34288-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17890783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1986 Dec 1;240(2):385-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3028375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1994 Oct;26(2):631-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7948918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:611-641</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Jan;77(2):198-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24308505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2005 Aug;23(8):1013-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15951804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Apr 7;281(14):9018-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16449229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2016 Aug;34(8):881-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27398790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Biochem Physiol. 1959 Aug;37(8):911-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13671378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2015 Sep 18;16(9):22636-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26393581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Lipid Res. 2010 Apr;49(2):108-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19857520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1993 May 1;213(3):965-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8504835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1974 Nov;71(11):4565-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4373719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 24;276(34):31561-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11397798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Oct 23;553(3):440-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14572666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2009 Jun;91(6):679-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19063932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1989 Nov 15;83(1):57-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2512199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1981 Jan;206(1):21-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7212717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Apr 2;274(14):9216-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10092594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1978 Oct;90(2):223-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">710426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Feb 22;277(8):6478-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2004 Oct;45(10):1899-909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15292371</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>Suède</li>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="Suède">
<noRegion>
<name sortKey="Yilmaz, Jenny Lindberg" sort="Yilmaz, Jenny Lindberg" uniqKey="Yilmaz J" first="Jenny Lindberg" last="Yilmaz">Jenny Lindberg Yilmaz</name>
</noRegion>
<name sortKey="Beganovic, Mirela" sort="Beganovic, Mirela" uniqKey="Beganovic M" first="Mirela" last="Beganovic">Mirela Beganovic</name>
<name sortKey="Stymne, Sten" sort="Stymne, Sten" uniqKey="Stymne S" first="Sten" last="Stymne">Sten Stymne</name>
</country>
<country name="Canada">
<noRegion>
<name sortKey="Lim, Ze Long" sort="Lim, Ze Long" uniqKey="Lim Z" first="Ze Long" last="Lim">Ze Long Lim</name>
</noRegion>
<name sortKey="Vrinten, Patricia" sort="Vrinten, Patricia" uniqKey="Vrinten P" first="Patricia" last="Vrinten">Patricia Vrinten</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Breazeale, Steven" sort="Breazeale, Steven" uniqKey="Breazeale S" first="Steven" last="Breazeale">Steven Breazeale</name>
</noRegion>
<name sortKey="Andre, Carl" sort="Andre, Carl" uniqKey="Andre C" first="Carl" last="Andre">Carl Andre</name>
<name sortKey="Senger, Toralf" sort="Senger, Toralf" uniqKey="Senger T" first="Toralf" last="Senger">Toralf Senger</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A33 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A33 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28197856
   |texte=   Determination of Substrate Preferences for Desaturases and Elongases for Production of Docosahexaenoic Acid from Oleic Acid in Engineered Canola.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28197856" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024